中国智能语音行业格局与未来发展趋势详细解读

-回复 -浏览
楼主 2020-03-07 16:08:40
举报 只看此人 收藏本贴 楼主
英飞凌

语音识别作为人工智能发展最早、且率先商业化的技术,近几年来随着深度学习技术的突破,识别准确率大幅提升,带动了一波产业热潮。继科大讯飞、捷通华声之后,行业内又涌现出思必驰、云知声、出门问问等后起之秀,在教育、客服、电信等传统行业之外,开辟出了车载、家居、医疗、智能硬件等语音技术应用新天地。

与此同时,自然语言处理(NLP)作为人机交互技术的重要一环,也为此提供了助力。Siri的推出打开了语音交互的先河,不仅催生了一批语音语义创业公司,还激发了百度、搜狗等大型互联网公司在语音语义技术上的投入。

由于NLP和语义理解技术能够让机器理解人的意图和需求,并把相应内容反馈给用户,因此在客服行业得到了广泛应用,有效降低了人力成本,提高了企业运营效率。

那么,中国智能语音语义产业主要涉及哪些技术?技术发展水平如何?存在哪些问题?有哪些应用领域、玩家和商业模式?行业格局和未来发展趋势又将如何呢?本文将为您一一解答。

一、技术篇:语音识别和NLP技术仍不成熟

智能语音语义包含语音合成、语音识别和自然语言处理(NLP)三项主要技术。

语音合成技术发展最早,应用已较为普遍,除了合成音仍偏机械之外,基本不存在太大技术问题;语音识别在2012年卷积神经网络(CNN)应用之后,准确率大幅提升,已经在C端、B端得到了广泛应用,但效果和体验还不够理想;NLP技术虽然在搜索引擎中早有应用,但在人机交互领域仍属于浅层处理。

语音识别“鲁棒性“问题显著

在生物学中,有个术语叫做“鲁棒性”,是指系统在扰动或不确定的情况下,仍能保持它的特征行为。这一问题在语音识别领域也存在。

语音识别整个过程包含语音信号处理、静音切除、声学特征提取、模式匹配等多个环节。由于语音信号的多样性和复杂性,系统只能在一定限制条件下才能获得满意效果。在真实使用场景中,考虑到远场、方言、噪音、断句等问题,准确率会大打折扣。目前业内普遍宣称的97%识别准确率,更多的是人工测评结果,只在安静室内的进场识别中才能实现。

要解决语音识别鲁棒性问题,需要在技术和产品两方面进行优化。一方面,在语音增强、麦克风阵列以及说话人分离等多项技术领域持续投入,并结合后端语义,促进对上下文的理解,从而提升识别效果;另一方面,需要从产品设计上进行优化,比如通过进一步交互,使语音识别变得更为准确。

语义分析仍是浅层处理

NLP技术大致包含三个层面:词法分析、句法分析、语义分析,三者之间既递进又相互包含。

图:NLP分析技术

123456下一页>
我要推荐
转发到